Space Radiation Risks for Astronauts on Multiple International Space Station Missions
نویسنده
چکیده
Mortality and morbidity risks from space radiation exposure are an important concern for astronauts participating in International Space Station (ISS) missions. NASA's radiation limits set a 3% cancer fatality probability as the upper bound of acceptable risk and considers uncertainties in risk predictions using the upper 95% confidence level (CL) of the assessment. In addition to risk limitation, an important question arises as to the likelihood of a causal association between a crew-members' radiation exposure in the past and a diagnosis of cancer. For the first time, we report on predictions of age and sex specific cancer risks, expected years of life-loss for specific diseases, and probability of causation (PC) at different post-mission times for participants in 1-year or multiple ISS missions. Risk projections with uncertainty estimates are within NASA acceptable radiation standards for mission lengths of 1-year or less for likely crew demographics. However, for solar minimum conditions upper 95% CL exceed 3% risk of exposure induced death (REID) by 18 months or 24 months for females and males, respectively. Median PC and upper 95%-confidence intervals are found to exceed 50% for several cancers for participation in two or more ISS missions of 18 months or longer total duration near solar minimum, or for longer ISS missions at other phases of the solar cycle. However, current risk models only consider estimates of quantitative differences between high and low linear energy transfer (LET) radiation. We also make predictions of risk and uncertainties that would result from an increase in tumor lethality for highly ionizing radiation reported in animal studies, and the additional risks from circulatory diseases. These additional concerns could further reduce the maximum duration of ISS missions within acceptable risk levels, and will require new knowledge to properly evaluate.
منابع مشابه
Space Radiation Organ Doses for Astronauts on Past and Future Missions
We review methods and data used for determining astronaut organ dose equivalents on past space missions including Apollo, Skylab, Space Shuttle, NASA-Mir, and International Space Station (ISS). Expectations for future lunar missions are also described. Physical measurements of space radiation include the absorbed dose, dose equivalent, and linear energy transfer (LET) spectra, or a related quan...
متن کاملPoor Understanding of Radiation Profiles in Deep Space Causes Inaccurate Findings and Misleading Conclusions
The radiation environment in deep space, where astronauts are behind the shelter provided by the Earth’s magnetosphere, is a major health concern. Galactic cosmic rays (GCR) and solar particle events (SPE) are two basic sources of space radiation in the solar system. The health risks of exposure to high levels of space radiation can be observed either as acute and delayed effects. Zhang et al. ...
متن کاملIdentification of trends into dose calculations for astronauts through performing Sensitivity analysis on calculational models used by the Radiation Health Office
The Radiation Health Office (RHO) determines each astronaut’s cancer risk by using models to associate the amount of radiation dose that astronauts receive from spaceflight missions. The baryon transport codes (BRYNTRN), high charge (Z) and energy transport codes (HZETRN), and computer risk models are used to determine the effective dose received by astronauts in Low Earth orbit (LEO). This cod...
متن کاملRadiation Doses Experienced by Astronauts in Eva (evarm)
Extra Vehicular Activity (EVA) will become a large part of the astronaut’s work during the construction phase of International Space Station (ISS). It is already well known that long duration space missions inside a spacecraft lead to radiation doses that are high enough to be of significant health risk to the crew [1]. The doses during EVA, however, have not been quantified to the same degree....
متن کاملشبیهسازی اثر تشعشات فضایی بر پلاکتهای خون
The risk of leukemia and other radiation oriented diseases for astronauts increases with exposure to cosmic radiation. During the space missions, the blood and immune system change and the bones are affected by osteoporosis. In this research, a model, based on the human blood system, is presented for the study of the microgravity and the space radiation effects on the blood cells. This model is...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره 9 شماره
صفحات -
تاریخ انتشار 2014